
Intelligent Exploration for Genetic Algorithms

Using Self-Organizing Maps in Evolutionary Computation

Heni Ben Amor
Universität Koblenz-Landau

Universtitätsstraße 1
56070 Koblenz, Germany

amor@uni-koblenz.de

Achim Rettinger
Universität Koblenz-Landau

Universtitätsstraße 1
56070 Koblenz, Germany

achim@uni-koblenz.de

ABSTRACT
Exploration vs. exploitation is a well known issue in Evo-
lutionary Algorithms. Accordingly, an unbalanced search
can lead to premature convergence. GASOM, a novel Ge-
netic Algorithm, addresses this problem by intelligent explo-
ration techniques. The approach uses Self-Organizing Maps
to mine data from the evolution process. The information
obtained is successfully utilized to enhance the search strat-
egy and confront genetic drift. This way, local optima are
avoided and exploratory power is maintained. The eval-
uation of GASOM on well known problems shows that it
effectively prevents premature convergence and seeks the
global optimum. Particularly on deceptive and misleading
functions it showed outstanding performance. Additionally,
representing the search history by the Self-Organizing Map
provides a visually pleasing insight into the state and course
of evolution.

Categories and Subject Descriptors
I.1.2.8 [Computing Methodologies]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms

Keywords
Genetic Algorithm, Self-Organizing Map, Exploration vs.
Exploitation, Diversity, Premature Convergence, Genetic Drift

1. INTRODUCTION
Techniques from the field of Evolutionary Computation,

in this case Genetic Algorithms (GA), have been proven to
be well suited for finding global optima in complex search
spaces. Using a population of individuals evolving over nu-
merous generations as a metaphor the search is iteratively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

guided by the fitness of the current parent generation. Dur-
ing an optimization run thousands of individuals, each one
representing a possible solution, are generated, evaluated
and by chance recombined to produce offspring. Informa-
tion from previous generations is only implicitly and par-
tially preserved in the current genome.
This bears the risk of a regeneration of individuals that

have already been seen in the search process. Even more
problematic is the fact that the search can be negatively
affected by genetic drift. As a consequence, big parts of the
search space, potentially containing the global optimum, will
never be explored.
In this work we try to show that there is an efficient way

not only to monitor the whole evolution process but also to
extract valuable data from it (see section 4) which is used
to guide the search process (see section 5). This task is
achieved by adaptive operators utilizing data, mined by a
Self-Organizing Map (SOM), from individuals of previous
generations. The evaluation of our approach proves that
GASOM is a well suited tool for addressing the issue of
premature convergence in GAs (see section 6). Finally we
point out how other problems can be solved by GASOM (see
section 7).

2. BACKGROUND

2.1 Premature Convergence and the Loss of
Diversity

A critical problem when dealing with Evolutionary Algo-
rithms (EA) is the phenomenon of premature convergence.
According to [4], premature convergence occurs when the
population of a GA reaches a suboptimal state where ge-
netic operators can no longer produce offspring which out-
performs their parents. In that case, the search process will
likely be trapped in a region containing a non-global opti-
mum. A simple yet popular explanation for the occurence
of this phenomenon is the loss of diversity. In that context
diversity refers to the (genetic) variation of the population
members. Previous work on tackling premature convergence
was mostly centered on diversification techniques. Various
enhanced strategies for diversity maintenance have been pro-
posed which target the different stages of the evolution pro-
cess.

Selection
Some techniques try to prevent selection from being too
much biased towards high fitness individuals. Usually this is

1531

done by pre-processing the fitness values prior to the selec-
tion procedure. Rank scaling [5], for instance, ranks the indi-
viduals according to their raw objective value. This avoids
the possibility of a small number of highly fit individuals
dominating the reproduction process. On the other hand,
so called sharing methods [14] force an individual to share its
fitness with other population members occupying the same
niche.

Mating
Another strategy to maintain high diversity is to apply re-
striction and encouragement to the selection of the mating
partners. In [1] incest is prevented by prohibiting crossover
of genetically similar individuals. More specifically, mating
partners with a Hamming distance below a given threshold
were not authorized for crossover. Seduction [13] tries to
mimic the mating behavior of sexually reproducing organ-
isms. Here, the mating decision is based upon an attraction
value computed between the partners.

Replacement
In steady-state GAs the replacement strategy determines
which elements will lose their place in the population when
new chromosomes are inserted. A well designed replace-
ment condition can keep promising genetic material from
getting lost. In deterministic crowding [9], each child re-
places the most similar parent if it has higher fitness. As
parents and children typically are very similar, unfair com-
petition between individuals occupying different niches is
avoided. Recently, a hybrid replacement scheme was pro-
posed by Lozano et al[8]. They try to replace chromosomes
which perform poorly with respect to both fitness and con-
tribution to diversity.

Although the extensions described above have been shown
to partially improve the efficiency of the search, they make
simplifying assumptions by attacking rather the symptoms
of premature convergence than the real cause [6].
First of all, high diversity does not imply better GA perfor-
mance. This is tightly coupled to the question of exploration
vs. exploitation. Enforcing diversity in the early phases of
evolution ensures a broad exploration of the search space.
However, in phases when high exploitation is needed, such
promotion could be counterproductive or even destructive.
Finding a modifiable balance between exploration and ex-
ploitation is the key to this issue.
Furthermore, once diversity is lost exploratory power can-
not be solely regained by selection, mating or replacement of
current individuals. Additionally, high mutation rates capa-
ble of increasing the diversity again are known to be mainly
destructive. Hence there is need for an intelligent opera-
tor, which is able to reintroduce fresh and potential genetic
material into the gene pool, even in highly converged popu-
lations.
Finally, previous approaches tried to ensure high genetic
variability for each generation individually. Considering only
the diversity of the current population, important regions of
the solution space are possibly neglected, while others are
revisited numerous times. As will be shown in this paper,
the search can be controlled and guided more efficiently if
diversity is considered throughout the whole evolution pro-
cess. We refer to this as novelty.

2.2 The Self-Organizing Map
The SOM [7] is a class of artificial neural networks which

has proven to be a valuable tool in analysis and visualiza-
tion of high-dimensional data. Based on unsupervised learn-
ing the SOM performs a non-linear mapping from a high-
dimensional input space onto a normally two-dimensional
grid.
More precisely speaking, the SOM consists of a set U of

units or neurons arranged on a regular grid. Each unit i ∈ U
is assigned a prototype vector mi = [mi1, mi2, ..., min] where
n is the number of dimensions of the input space. The neu-
rons are connected to adjacent neurons by a neighborhood
relation which constitutes the topology of the map. Usu-
ally, a rectangular or hexagonal topology is used. Through-
out this paper the rectangular topology will be used as this
facilitates the visualization of each unit’s prototype vector.
The SOM has successfully been applied in a wide range

of research areas covering data mining, pattern recognition
and most interestingly in the analysis and control of complex
systems.

3. THE GASOM APPROACH
GASOM stands for “Genetic Algorithm using Self-Orga-

nizing Maps.” This novel approach aims at avoiding the
problems of GAs discussed in section 2.1 through informa-
tion obtained from the evolution process by a SOM. These
are its main features:

1. An explicit representation of the search history

2. A fitness evaluation promoting novelty

3. A reseeding operator preserving exploratory power

4. A control mechanism balancing exploration and ex-
ploitation

GASOM is based on a standard steady-state GA. In the next
two sections we will elaborate on its improvements in detail.
First, we will show in section 4 how SOMs can be used to
monitor, document and analyze the behavior of EAs during
an optimization run. The representation of the search his-
tory developed in this section, will help to gain insight into
phenomena occurring during evolution and extract useful
information from it. Section 5 comments on how the ex-
tracted information can be used to guide the search process
efficiently.

4. MINING THE EVOLUTIONARY SEARCH
Although working in an algorithmically simple manner,

EAs can produce vast amounts of data during an optimiza-
tion run. In each of the numerous generations a large num-
ber of chromosomes is generated and evaluated. In tradi-
tional GAs only the current population is stored. But with
the help of data from the previous generations you could
gain valuable insight into the way EAs work and the prob-
lems they encounter. Possibly, we could draw important
conclusions on how to improve their efficiency and guide the
search online. Thus, there is need for an intelligent and
efficient way of mining and storing the data during com-
putation in real time. Necessary requirements are for ex-
ample, processing incoming data such that a new chromo-
some should not lead to an entire recalculation of previously

1532

computed knowledge. In other words, the knowledge acqui-
sition should be incremental. Furthermore, the employed
technique should be able to analyze data of arbitrarily high
dimensions and independent from the number of data en-
tities processed. Additionally, the computational overhead
caused by its application should be scalable according to the
needs. Finally, to facilitate human introspection and quali-
tative analysis, the applied technique should support some
kind of graphical output.
The SOM algorithm introduced in 2.2 meets the discussed

requirements. It projects the data samples onto a two-
dimensional lattice. In contrast to many other multidimen-
sional scaling methods, this projection does not have to be
repeated when new data points are evaluated. It can be
stored as a table and has low memory demands. The tab-
ular representation facilitates the quantitative analysis of
the recorded data. It can also easily be turned into various
visualization forms including bitmaps, histograms or trajec-
tories. In [12] SOM’s have already been used to visulaize
various aspects of evolutionary search.
Before applying, the SOM has to be appropriately trained

in order to represent the envisioned data set. In this case
the focus is on the genotype or solution space. Training the
SOM with a large number of points from this space yields a
two-dimensional projection of it.

4.1 Training the SOM
In this section how to train a SOM and how to use it to

analyze the population is discussed. The training is carried
out only once before the start of the GA. As long as the
chromosome length and the representation form (binary vs.
real coded) does not change, a trained SOM can be stored
and reused. In the training phase a large number of differ-
ent individuals from the genotype space are shown to the
map. In our experiments a set of 100.000 different individu-
als and a map with 10x10 neurons were used.1 The number
n of weights in the prototype vectors equals the number of
genes in a chromosome. The training comprised the follow-
ing steps:

1. Initialization: Choose random values for the weights
mi1, mi2, ..., min of the prototype vectors. As the only
restriction, the weight vectors mi have to be different.

2. Stimulus and Response: A sample chromosome x
is randomly chosen from the genotype space. In this
step it is crucial that the random selection of chro-
mosomes obeys a uniform distribution. If not, the
learning could be biased towards a particular region
of the search space. Distances to all prototype vectors
are then computed via some distance measure (usu-
ally Euclidean distance). The winning neuron b, also
called best-matching unit (BMU), is the map unit with
prototype closest to x.

‖x − mb‖ = min
i

{‖x − mi‖} (1)

3. Adaptation: The prototype vectors are then updated
according to the following update rule:

mi(t + 1) = mi(t) + α(t)hbi(t)[x − mi(t)] (2)

1The words unit and neuron are used here in a synonymical
way.

where t is the current iteration, α(t) is the learning
rate at iteration t and hbi(t) is a neighborhood kernel
centered at the winning unit:

hbi(t) = exp

„
−‖r − r′‖2

2σ2(t)

«
(3)

where r and r′ denote the positions of the BMU and
the neuron i on the SOM grid. Both α(t) and σ(t) are
monotonically decreasing functions of time.

Step 2 and 3 are repeated until the maximum number of iter-
ations is reached. Once training is finished, each unit stands
for a particular region of the solution space. It represents
all chromosomes to which it is closest.
The learning process, as described above, is of stochastic

nature. It also expects various parameters like the learning
rate to be set by the user. Consequently, the difference in
accuracy between two trained maps can vary heavily. If we
would apply a map of mediocre accuracy to analyze a given
data set, we would probably draw wrong conclusions. Hence
we need to ensure that a map is of reliable quality before we
can use it for the envisioned tasks.

In this work a simple test procedure is employed to test
the quality of a SOM.We randomly generate a set of new
chromosomes and project them onto the map. The pro-
jection is done by finding the appropriate BMU for each of
these chromosomes, as defined by equation 1. We keep track
how many times each neuron was activated as the BMU. Let
E(i) be a function, that returns the number of times a neu-
ron i was activated. Ideally, the activation frequency of all
neurons is equal:

E(i) = E(j) ∀i, j ∈ U (4)

Thus, in order to ensure reliable analysis, we take a SOM
which fits requirement 4, best. If it does not, we assume
that the learning was biased.

4.2 Mapping the Population
Now, we can employ the trained SOM to classify incom-

ing data/chromosomes. For this we assign each evaluated
individual to the nearest map unit, as already done before
in the optimization step. To store the resulting information,
we will use two frequency tables. The first table, which we
will call the population distribution table, holds the activa-
tion frequencies with respect to only those individuals that
are currently in the population. In the following the activa-
tion frequency of a neuron i in the population distribution
table, will be denoted by Ep(i). The second table, called the
search history table, stores the activation frequencies with
respect to all individuals evaluated during evolution. To ac-
cess the information from this table we will use the function
Eh(i).
Examining the first table, we can assess the diversity in

the current population. The higher the number of different
activated neurons the higher the diversity. In contrast to
this, the search history table gives us an insight into the
course of evolution. If for instance a particular neuron was
rarely activated, we can deduce that the associated region
was not sufficiently explored by the GA. But, before we get
to the analysis phase, we have to find ways to represent the
contents of both the SOM and the frequency tables.

1533

(a) (b) (c)

Figure 1: A trained SOM in prototype representation(a), fitness landscape representation(b) and search
history representation(c)

4.3 Representing the Search History
Although the procedure outlined above effectively pro-

cesses the chromosome data set it still causes difficulties to
the human user to interpret the results. This is mainly due
to the numerical output of the procedure. Interpretation
becomes easier if we use visual representation forms.

In figure 1a a trained SOM of 10x10 units can be seen.
Training was effectuated with binary chromosomes of 16
bits. Each unit is represented by a pattern of 16 pixel vi-
sualized as 4x4 blocks. A pattern denotes the underlying
prototype or weight vector of that particular unit. Each
black pixel in the pattern refers to a 0 while a white pixel
refers to 1 in the weight of the prototype vector. For in-
stance, if a unit is depicted by an entirely white block the
corresponding weight vector is ’1111111111111111’.

If you take a closer look at the map, you detect that there
is an axis of blackish units beginning at the lower left cor-
ner and reaching to the upper right corner. The prototype
vectors of these units have mostly black pixels. This is due
to the fact that in the training process genotypically similar
chromosomes are clustered onto neighbouring neurons.

Now, we apply the above SOM to a 16bit 1s-counting
(Max1) problem. In this problem, the fitness of an individ-
ual equals the number of 1s in its chromosome. We visualize
the fitness distribution on the map by assigning each neuron
a color according to the fitness of the corresponding weight
vector. This yields a low resolution picture of the fitness
landscape as can be seen in figure 1b. Good units have a
light color while worse ones have darker color. The figure
confirms the observation made before. The diagonal axis
beginning at the left lower corner can now clearly be seen
as a dark cluster of low fitness. We would expect a GA to
avoid this region and seek out the higher fitness regions in
the other corners.

To check this last assumption, we will overlay the infor-
mation from the search history table onto the map. The
information was gathered during a run of a simple GA on
the Max1 problem. In figure 1c one sees a slightly faded

version of the prototype oriented representation from 1a. In
addition, every activation of a unit in the search history ta-
ble is plotted as a black dot. It is slightly perturbed for
easier identification of multiple activations. Each of these
dots represents the projection of an evaluated chromosome
onto the map. These additional plots tell us which parts of
the search space have been explored by the GA.

In figure 1c it can be observed, that the used GA ef-
fectively escaped the regions of low fitness. The search is
mostly centered around regions of high fitness in the lower
right and the upper left corner of the SOM. Furthermore, it
can be observed that a few neurons dominate most of the
activity, whereas a large number of neurons in the middle of
the map have not even been activated once.

What looks like the optimal search strategy at the first
sight is in fact an undesirable behaviour of a GA. Fitness
landscapes, GAs are normally applied to, are almost al-
ways discontinuous, deceptive or have numerous local op-
tima. Otherwise there are techniques better suited for find-
ing global optima like simple hill-climbing for this example.
But there is no way that a GA that does not explore such
big parts of the search space and loses its exploratory power
this fast can succeed in a difficult task.

Generation 20 Generation 30 Generation 70

Figure 2: Visualization of Genetic Drift

Figure 2 visualizes three different states of a population
distribution table during the optimization of a multimodal
function. The color coding used in the figures above refers
to the activation count of each neuron in the population
spread table. The darker the color of a neuron the lower
its activation count. We see that in generation 20 two dif-
ferent neurons have a high activation count (visualized as

1534

white pixels). These neurons correspond to the subspaces
containing the function’s global optima. In generation 30
genetic drift focuses the search on one of the two subspaces
(the upper left white unit becomes gray). Finally, in genera-
tion 70 we notice that almost all neurons have low activation
frequencies except of one single peak. At that time there is
no more competition among subspaces on the map. The
exploratory power and diversity is lost.
Up to this point we have shown that the population distri-

bution table and the search history table are powerful tools
to monitor the search process of EAs. The information is
mined by SOMs and stored in the tables while meeting all
requirements in terms of computational complexity.

5. ENHANCING THE
EVOLUTIONARY SEARCH

Based on the information gained from the analysis and
the representations described above one can devise strate-
gies to tackle the problems outlined in section 2.1 and 4.3.
Steps taken in GASOM towards this goal is the topic of this
section.
If at some instance in time evolution focuses too much on

a particular set of individuals and the exploratory power is
at risk, we can try to guide it towards unexplored regions of
the solution space. By looking up the search history table,
the least explored subspaces can be easily determined. In
subsection 5.1 it will be discussed how the tables holding
activation frequencies can be used to develop a novelty pro-
moting fitness evaluation. This new fitness evaluation will
encourage the exploration of previously neglected solutions.
However, this alone will not be enough to tackle premature
convergence. As already motivated in subsection 2.1 a pow-
erful operator is needed in order to reintroduce fresh and
potential genetic material. This will be explained in subsec-
tion 5.2. In subsection 5.3 the question of exploration vs.
exploitation will be addressed. A rough measurement for
the ratio of exploration and exploitation is introduced and
used to balance the evolutionary search.

5.1 Adapting the Fitness Evaluation
In GASOM the fitness of a chromosome is computed by

the use of two ranks. The first rank results from ordering
the population with respect to the objective value (fitness).
The second rank orders individuals by their novelty. Novelty
here refers to the number of similar chromosomes already en-
countered during evolution. To determine the novelty factor
of a chromosome we use the following function:

novelty(c) = 1/Eh(bc) (5)

where c is the current chromosome and bc is its BMU on
the trained Self-Organizing Map. Put in words, novelty is
the inverse of the activation frequency in the search history
table. The sum of both ranks is then used as the individual’s
fitness score.
By applying the latter fitness assignment scheme an in-

dividual is given two chances to survive in the population.
The first possibility is a good performance on the posed
(optimization) problem. The second possibility a contribu-
tion to the exploration of new subspaces. In phases of high
exploitation the activation frequencies of exploited regions
will increase drastically. As a result the novelty factor of the
corresponding individuals will decrease. Many of them will

then vanish from the population, giving place to individuals
with higher novelty. Thus, an increase in exploitation will
also effect an increase in exploration.

5.2 Confronting Genetic Drift with Reseeding
To regain lost diversity some GA variants employ reseed-

ing operations. For instance, the CHC algorithm [2] reseeds
a set of random individuals to restore variation in highly
converged populations. In [11] the reseeding operation is
based on previously encountered high fitness points.
GASOM performs reseeding by introducing individuals

with a high novelty factor into the population. Such indi-
viduals correspond to the neurons with low activation count
in the search history table. Reseeding involves two steps.
First, a so called reseeding-pool is created. The reseeding-
pool consists of a set of buckets, each of which stands for
a particular neuron on the SOM. The buckets are filled by
randomly created new chromosomes. Each newly created
chromosome is assigned to the bucket which represents its
BMU. The requirements we have set up for SOMs in sec-
tion 4.1 guarantee that the buckets will be uniformly filled.
Then, the neurons with lowest activation frequencies are
determined. If needed, individuals are sampled (without
replacement) from the respective buckets and inserted into
the population. To keep the population size constant the
individual from the population with the lowest fitness has
to be killed instead. Metaphorically speaking the GASOM
reseeding operator could be viewed as a resettlement of indi-
viduals with a low fitness from overcrowded areas to sparsely
populated regions.
To evaluate the performance of this approach, we con-

ducted a few experiments on a 16bit Max1 function. In these
tests we compared it to other strategies, namely random-
reseeding and reseeding of old individuals. A standard gen-
erational GA was used with a population size of 100 individ-
uals. At each generation 10 individuals were requested from
the reseeding operator. To assess their quality we compared
them with other chromosomes, but did not insert them into
the population.

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 0 50 100 150 200 250 300 350 400 450 500

H
am

m
in

g
D

is
ta

nc
e

Generations

GASOM
Random

Figure 3: Average Hamming distance of a reseeded
individual to all previously evaluated individuals

In figure 3 a plot of the average Hamming distance of re-
seeded chromosomes to all previously encountered chromo-
somes can be seen. Random-reseeding maintains an average
distance of approximately 8 bits throughout all of the 500
generations. The SOM based reseeding starts with similar
values in the first few generations. The average distance

1535

then steadily increases up to approximately 10 bits . This
phenomenon occurs due to the fact that the quality of re-
seeding becomes better the more activations are stored in
the search history table.

Table 1: Occurrence number of minimal Hamming
distance (reseeded vs. all encountered individuals)

Method
Hamming Distance in Bits
0 1 2 3 >3

Old Indiv. 500 0 0 0 0
Random 199 275 25 1 0
SOM 6 241 246 7 0

In the next experiment at each generation the minimal
Hamming distance between the reseeded individuals and
the encountered individuals is measured. Table 1 shows the
number of times each distance was measured. Of course re-
seeding of old individuals always results in a minimal Ham-
ming distance of 0, as the reseeded individuals are all previ-
ously seen. A more sensible comparison with respect to nov-
elty can be done by comparing random- and SOM-reseeding.
While the random strategy reseeded in 199 generations a
previously seen chromosome, the SOM based strategy did
so in only 6 generations. The table also shows, that our
new approach reseeded most of the time chromosomes which
have at least a Hamming distance of 2 bits to all previously
encountered chromosomes.

Table 2: Occurence number of minimal Hamming
distance (reseeded vs. population individuals)

Method
Hamming Distance in Bits

0 1 2 3 4 5 > 6

Old Indiv. 173 183 104 24 9 8 1
Random 7 55 230 185 23 0 0
SOM 0 0 30 134 256 74 6

The same experiment was then repeated (see table 2).
This time however, we measured the Hamming distance be-
tween the reseeded individuals and the individuals in the
current population. The results confirm our previous obser-
vations. The SOM based reseeding never reintroduced an
individual which was already in the population, while the
other techniques did so in 7 generations (random) and 173
generations (old Indiv.).
We can conclude that the SOM-reseeding strategy effec-

tively maintains high exploratory power. Please note that
although reseeding of old individuals performed poorly in
the above tests it has the positive side effect of keeping the
number of fitness evaluations low.

5.3 Balancing Exploration and Exploitation
The limiting factor of a GA search run is in most cases the

numbers of fitness evaluation. Fitness evaluations consume
a lot of time in real world application and might even involve
testing by an expert. Thus, the goal of every GA should be
to get the best results with regard to a limited number of
fitness evaluations. The key for an efficient search is the
balance between exploration and exploitation. In the begin-
ning of the search premature convergence should be avoided
before having covered as much of the search space as possi-
ble. In this phase exploration must be enforced while at the

end of the search process it is favorably to make the most
out of the already found best solutions. So exploitation is
the better choice. In other words, the degree of exploitation
should be monotonically decreasing and the degree of explo-
ration should be monotonically increasing during the search
run, respectively.
The novelty based fitness evaluation, as pointed out in

section 5.1, is a good starting point for balancing exploration
and exploitation. So far the two ranks are equally weighted
to produce the final fitness of an individual. This results in
an implicitly well balanced exploration and exploitation. If a
dynamic behaviour with high exploration in the beginning
and high exploitation in the end is aspired explicitly the
ranks could be weighted accordingly. This concept is already
implemented for the reseeding operator (see section 5.2). So,
how many individuals should be reseeded in a specific time
step?
First, the amount of exploration in the current state of

the GA is assessed by counting the number of different acti-
vated neurons in the population distribution table. Second,
a balance function is used to determine the number of neu-
rons which ideally should be activated in the current state of
the search process. This optimal number of activated units
r is calculated by

r =

„
1− n

nmax

«
∗ ||U || (6)

where n is the number of fitness evaluations already per-
formed, nmax is the maximal number of fitness evaluations
and ||U || is the total number of neurons of the SOM. The
reseed fraction equals the difference between the ideal and
measured neuron count.
Only through the effective combination of both the new

fitness assignment scheme and the SOM reseeding operator
an efficient exploration strategy can be achieved. If the re-
seeding operator would be used alone, the introduced new
individuals would in most cases die immediately and disa-
pear from the population because novelty is not taken into
account. On the other hand, by actively generating novel
chromosomes one does not have to rely on crossover and
mutation that only by chance might produce new genetic
material.

6. EVALUATION AND RESULTS
GASOM was evaluated using three well known problems,

namely a Royal Road function [10], the Deceptive F9 func-
tion from [9] and the generalized Rosenbrock’s function[5].
The chromosome length was 64 bits, 24 bits and 60 bits
respectively.
The following parameter setting was used in all test runs.

A mutation rate pm = 0.005 and a crossover rate of pc =
0.7 with two point crossover. Selection was accomplished
by binary tournament selection. The population size was
set to 50 individuals while the maximum number of fitness
evaluations was 50.000 evaluations. To reduce statistical
noise, each function was run 100 times and the results were
averaged.
First a set of experiments was conducted, in which the

contribution of the constituent parts of GASOM to the over-
all performance was assessed. The performance measure
used is the average of the best fitness found at the end of
each run. Table 3 shows the results of this experiments.

1536

Table 3: Average best fitness of GASOM variants
Method Deceptive F9 Royal Road Rosenbrock
Novelty 24,19 167,20 0,02575
Reseeding 28,28 185,76 0,00119
Nov. & Res. 30,00 220,56 0,00028

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 F
itn

es
s

Fitness Evaluations

GASOM
Steady State

Det. Crowding
Hybrid

Figure 4: Performance on Royal Road

Best results are highlighted in bold. It can clearly be seen,
that the best performance is achieved when novelty and and
reseeding are used in combination. The synergetic effect be-
tween the new fitness assignment scheme and the reseeding
operator leads to a significant improvement. This confirms
the assumption made in section 5.3 that both proposed ele-
ments are needed for an efficient exploration strategy.
Next, another set of experiments was conducted in which

we compared the performance of GASOM to a standard
steady-state GA, deterministic crowding [9] and the novel
hybrid replacement scheme of Lozano et al. [8]. These vari-
ants have already been shown to significantly improve the
performance of evolutionary search. Table 4 shows the re-
sults of this experiment.

Table 4: Average fitness of different GAs
Method Deceptive F9 Royal Road Rosenbrock
SteadyState 24,00 95,44 0,08394
Det. Crowding 26,88 188,72 0,00067
Hybrid 22,54 227,20 0,09671
GASOM 30,00 220,56 0,00028

Both, on the Deceptive F8 function and the Rosenbrock
function GASOM yields the best results out of the tested
GAs. On the Royal Road function the hybrid method per-
formed slightly better. However, its performance deterio-
rates on the other two functions. We may observe that GA-
SOM achieves a good trade-off in performance on different
problems and gives more stable results. Due to its improved
exploration ability, GASOM is able to drive the evolution
towards the most promising new regions.
Figure 4 shows plots of the average fitness during a run

of the Royal Road function. Both the simple steady-state
GA and the GA with hybrid replacement exhibit the typical
fitness jumps as new building blocks are rapidly propagated
among population individuals. Deterministic crowding has
a very neat looking monotic behavior but convergences pre-

maturely. In GASOM the average fitness makes small os-
cillations while increasing in a nearly linear fashion. The
oscillations are due to the interplay between the new explo-
ration techniques and the greediness of the GA.

Table 5: Number of times global optimum was found
(out of 100)
Method Deceptive F9 Royal Road Rosenbrock
SteadyState 0 6 0
Det. Crowding 44 50 0
Hybrid 3 77 0
GASOM 100 72 0

Table 5 shows the number of times the global optimum
was found on the used test functions. Our method achieves
outstanding results on the Deceptive F9 function. In all 100
runs it was able to find a global optimum. The runner-up
on this function (Deterministic Crowding) was able to find
the global optimum in 44 times, while the other GAs did
so in less than 5 times. The intelligent exploration scheme
significantly improved the efficiency of the search process
on deceptive functions. This was confirmed by other ex-
periments we conducted. The analysis of the search history
table gave insight into why GASOM performed better on
this type of problems. Typically, on deceptive problems the
search is lead away from the global optimum. Consequently,
the corresponding units in the search history table will be
activated less. The reseeding operator reintroduces individ-
uals from this part of the search space, while the novelty
based fitness assignment scheme gives them a chance to sur-
vive and reproduce.
Although diversity is not the primary goal of our proposed

GA, it should implicitly lead to a balance of diversity. In
order to measure the population diversity we used the fol-
lowing function[3]:

d(P) =

PL
i=1 min(Fi, 1− Fi)

L/2
(7)

and

Fi =

PN
j=1 Pi(j)

N
(8)

where N equals the population size and L is the chromosome
length in bits. Pi(j) returns the allele at the jth gene of
the chromosome. Figure 5 shows the change in diversity
during an optimizationn run of the Royal Road function. It
can be seen, that GASOM effectively balances the diversity
according to the phase of evolution. In the beginning it
maintains high diversity, which then linearly drops to nearly
0 in the later phases of exploitation.

7. CONCLUSIONS AND FUTURE WORK
In this work we proposed an intelligent exploration tech-

nique for GAs. The approach uses SOMs to analyize data
of the evolution process and utilize it to enhance the search
strategy. This lead to the development of a GA with four
new core components: an explicit representation of the search
history, a fitness evaluation promoting novelty, a reseeding
operator preserving exploratory power and a control mech-
anism balancing exploration and exploitation. This frame-
work, called GASOM, was tested against several other ap-

1537

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

D
iv

er
si

ty

Fitness Evaluations

GASOM
Steady State

Det. Crowding
Hybrid

Figure 5: Diversity on Royal Road

proaches and proved to be well suited for preventing prema-
ture convergence.

GASOM performed considerably well on deceptive prob-
lems where other GAs tend to get stuck in local optima.
The employed reseeding operator succesfully resisted genetic
drift. Hence, exploratory power was maintained where nec-
essary. Besides that the SOM offers a neat tool for visualiz-
ing the state of evolution.

An obvious refinement of the discussed algorithm would
be an explicit adaption of the fitness assignment. This could
be achieved by weighting the influence of the novelty rank
according to the measured degree of exploration (see section
5.3). Another starting point for straight forward fine-tuning
is the balance function. Up to now only a linearly decreas-
ing function was used. Exponential decline might be more
effective. Another minor adjustment could make GASOM
find as many different optima as possible instead of focusing
on one global optimum. Once more the key would be an in-
telligent compromise between exploration and exploitation.

A more fundamental issue is the size of the SOM. The
effect of varying the number of neurons on the performance
has not been investigated so far. An optimal trade-off be-
tween accuracy of the search history table and computa-
tional demands is desirable.

Furthermore, we aim at adjusting GASOM to multi-objective
problems. A promising study could be the identification of
each unit’s part of the Pareto front. The same methods used
in GASOM for balancing exploration and exploitation (see
section 5.3) could be used to balance the different objective
functions, accordingly. For this task other dimensionality re-
duction techniques might be more appropriate than SOMs.

Finally, we plan to apply GASOM in machine learning
environments. More specifically we are working on its ap-
plication to robot control in the RoboCup domain.

8. ACKNOWLEDGMENTS.
We would like to thank our advisors Oliver Obst and Jan

Murray for their encouragement and the stimulating discus-
sions. Thanks to Thomas Kleemann for his insightful hints

and comments. We are also grateful to the anonymous re-
viewers for their constructive and helpful comments.

The authors are partially supported by the German re-
search foundation DFG.

9. REFERENCES
[1] L. Eschelman and J. Schaffer. Preventing premature

convergence in genetic algorithms by preventing
incest. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 115–122.
Morgan Kaufmann, 1991.

[2] L. Eshelman. The chc adaptive search algorithm: How
to have safe search when engaging in nontraditional
genetic recombination. In Foundations of Genetic
Algorithms, pages 256–283. Morgan Kaufmann, 1991.

[3] C. Fernandes and A. Rosa. A study on non-random
mating and varying population size in genetic
algorithms using a royal road function. In Proceedings
of the 2001 Congress on Evolutionary Computation
CEC2001, pages 60–66. IEEE Press, 2001.

[4] D. Fogel. An introduction to simulated evolutionary
optimization. IEEE Transaction on Neural Networks,
5(1):3–14, 1994.

[5] D. A. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[6] J. Hu, K. Seo, Z. Fan, R. Rosenberg, and
E. Goodman. Hemo: A sustainable multi-objective
evolutionary optimization framework. In Proc. 2003
Genetic and Evolutionary Computing Conference.
Springer Verlag, July 2003.

[7] T. Kohonen, T. Kohonen, M. R. Schroeder, and T. S.
Huang. Self-Organizing Maps. Springer-Verlag New
York, Inc., 2001.

[8] M. Lozano, F. Herrera, and J.R.Cano. Replacement
strategies to preserve useful diversity in steady-state
genetic algorithms. In Press, March 2004.

[9] S. W. Mahfoud. Niching methods for genetic
algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, USA, 1995.

[10] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In F. J. Varela and P. Bourgine, editors,
Toward a Practice of Autonomous System:
Proceedings of the First European Conference on
Artificial Life, pages 245–254, 1991.

[11] K. Rasheed. GADO: A Genetic Algorithm for
Continuous Design Optimization. PhD thesis, Rutgers
University, New Brunswick, NJ, 1998.

[12] G. Romero, J.J.Merelo, P. Castillo, J.G.Castellano,
and M. Arenas. Genetic algorithm visualization using
self-organizing maps. In Parallel Problem Solving from
Nature - PPSN VII, pages 442–451. Springer Verlag,
2002.

[13] E. Ronald. When selection meets seduction. In
Proceedings of the Sixth International Conference on
Genetic Algorithms. Morgan Kaufmann, 1995.

[14] B. Sareni and L. Kraehenbuehl. Fitness sharing and
niching methods revisited. IEEE Transaction on
Evolutionary Computation, 2(3):97–106, September
1998.

1538

